Cargando…
Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index
BACKGROUND: Children with ADHD face deficits in interference control due to abnormalities in brain structure. A low body mass index and high physical activity are factors promoting brain health and may have the potential to reduce ADHD-related cognitive deficits. We aimed to investigate the predicti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421503/ https://www.ncbi.nlm.nih.gov/pubmed/36002962 http://dx.doi.org/10.1016/j.nicl.2022.103141 |
_version_ | 1784777607216103424 |
---|---|
author | Ludyga, Sebastian Ishihara, Toru |
author_facet | Ludyga, Sebastian Ishihara, Toru |
author_sort | Ludyga, Sebastian |
collection | PubMed |
description | BACKGROUND: Children with ADHD face deficits in interference control due to abnormalities in brain structure. A low body mass index and high physical activity are factors promoting brain health and may have the potential to reduce ADHD-related cognitive deficits. We aimed to investigate the predictive values of ADHD, body mass index and physical activity for interference control and the potential mediation of these associations by brain structure. METHOD: At 9 and 11 years, 4576 children with ADHD and neurotypical peers from the ABCD-cohort completed a Flanker task, anthropometric assessments and reported physical activity. Additionally, T1- and T2-weighted magnet resonance images were collected at both measurement time points. RESULTS: ADHD, lower physical activity and higher body mass index at baseline predicted lower interference control. Gray matter volume, surface area and gray-white matter ratio contributed to interference control. The longitudinal association between body mass index and interference control was mediated by gray-white-matter ratio. This mediating effect was stronger for children with ADHD than neurotypical peers and mainly restricted to regions associated with cognitive control. CONCLUSION: The maintenance of a lower body mass index contributes to interference control by a tendency to normalize regional alterations in grey-white-matter ratio. Being compliant with physical activity also promises higher interference control, but brain structure does not seem to underlie this association. |
format | Online Article Text |
id | pubmed-9421503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94215032022-08-30 Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index Ludyga, Sebastian Ishihara, Toru Neuroimage Clin Regular Article BACKGROUND: Children with ADHD face deficits in interference control due to abnormalities in brain structure. A low body mass index and high physical activity are factors promoting brain health and may have the potential to reduce ADHD-related cognitive deficits. We aimed to investigate the predictive values of ADHD, body mass index and physical activity for interference control and the potential mediation of these associations by brain structure. METHOD: At 9 and 11 years, 4576 children with ADHD and neurotypical peers from the ABCD-cohort completed a Flanker task, anthropometric assessments and reported physical activity. Additionally, T1- and T2-weighted magnet resonance images were collected at both measurement time points. RESULTS: ADHD, lower physical activity and higher body mass index at baseline predicted lower interference control. Gray matter volume, surface area and gray-white matter ratio contributed to interference control. The longitudinal association between body mass index and interference control was mediated by gray-white-matter ratio. This mediating effect was stronger for children with ADHD than neurotypical peers and mainly restricted to regions associated with cognitive control. CONCLUSION: The maintenance of a lower body mass index contributes to interference control by a tendency to normalize regional alterations in grey-white-matter ratio. Being compliant with physical activity also promises higher interference control, but brain structure does not seem to underlie this association. Elsevier 2022-08-04 /pmc/articles/PMC9421503/ /pubmed/36002962 http://dx.doi.org/10.1016/j.nicl.2022.103141 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Ludyga, Sebastian Ishihara, Toru Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title | Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title_full | Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title_fullStr | Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title_full_unstemmed | Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title_short | Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index |
title_sort | brain structural changes and the development of interference control in children with adhd: the predictive value of physical activity and body mass index |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421503/ https://www.ncbi.nlm.nih.gov/pubmed/36002962 http://dx.doi.org/10.1016/j.nicl.2022.103141 |
work_keys_str_mv | AT ludygasebastian brainstructuralchangesandthedevelopmentofinterferencecontrolinchildrenwithadhdthepredictivevalueofphysicalactivityandbodymassindex AT ishiharatoru brainstructuralchangesandthedevelopmentofinterferencecontrolinchildrenwithadhdthepredictivevalueofphysicalactivityandbodymassindex |