Cargando…
A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies
Time-lapse microscopy images generated by biological experiments have been widely used for observing target activities, such as the motion trajectories and survival states. Based on these observations, biologists can conclude experimental results or present new hypotheses for several biological appl...
Autores principales: | Cheng, Hui-Jun, Hsu, Ching-Hsien, Hung, Che-Lun, Lin, Chun-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chang Gung University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421944/ https://www.ncbi.nlm.nih.gov/pubmed/34628059 http://dx.doi.org/10.1016/j.bj.2021.10.001 |
Ejemplares similares
-
Enhancement of instrumented ultrasonic tracking images using deep learning
por: Maneas, Efthymios, et al.
Publicado: (2022) -
Novel Computing Technologies for Bioinformatics and Cheminformatics
por: Tang, Chuan Yi, et al.
Publicado: (2014) -
A deep learning approach to identifying immunogold particles in electron microscopy images
por: Jerez, Diego, et al.
Publicado: (2021) -
A deep learning-based algorithm for 2-D cell segmentation in microscopy images
por: Al-Kofahi, Yousef, et al.
Publicado: (2018) -
Analysis of Deep Learning-Based Phase Retrieval Algorithm Performance for Quantitative Phase Imaging Microscopy
por: Visitsattapongse, Sarinporn, et al.
Publicado: (2022)