Cargando…
Handling class imbalance in COVID-19 chest X-ray images classification: Using SMOTE and weighted loss
Healthcare systems worldwide have been struggling since the beginning of the COVID-19 pandemic. The early diagnosis of this unprecedented infection has become their ultimate objective. Detecting positive patients from chest X-ray images is a quick and efficient solution for overloaded hospitals. Man...
Autores principales: | Chamseddine, Ekram, Mansouri, Nesrine, Soui, Makram, Abed, Mourad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422401/ https://www.ncbi.nlm.nih.gov/pubmed/36061418 http://dx.doi.org/10.1016/j.asoc.2022.109588 |
Ejemplares similares
-
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
por: Seo, Jae-Hyun, et al.
Publicado: (2018) -
NSGA-II as feature selection technique and AdaBoost classifier for COVID-19 prediction using patient’s symptoms
por: Soui, Makram, et al.
Publicado: (2021) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022)