Cargando…
Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications
The Moth flame optimization (MFO) algorithm belongs to the swarm intelligence family and is applied to solve complex real-world optimization problems in numerous domains. MFO and its variants are easy to understand and simple to operate. However, these algorithms have successfully solved optimizatio...
Autores principales: | Sahoo, Saroj Kumar, Saha, Apu Kumar, Ezugwu, Absalom E., Agushaka, Jeffrey O., Abuhaija, Belal, Alsoud, Anas Ratib, Abualigah, Laith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422949/ https://www.ncbi.nlm.nih.gov/pubmed/36059575 http://dx.doi.org/10.1007/s11831-022-09801-z |
Ejemplares similares
-
Differential Evolution and Its Applications in Image Processing Problems: A Comprehensive Review
por: Chakraborty, Sanjoy, et al.
Publicado: (2022) -
A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization
por: Shehab, Mohammad, et al.
Publicado: (2022) -
A generative adversarial network for synthetization of regions of interest based on digital mammograms
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentation
por: Kumar Sahoo, Saroj, et al.
Publicado: (2023) -
Multiclass feature selection with metaheuristic optimization algorithms: a review
por: Akinola, Olatunji O., et al.
Publicado: (2022)