Cargando…

An evolutionary look into the history of lentil reveals unexpected diversity

The characterization and preservation of genetic variation in crops is critical to meeting the challenges of breeding in the face of changing climates and markets. In recent years, the use of single nucleotide polymorphisms (SNPs) has become routine, allowing us to understand the population structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerra‐Garcia, Azalea, Haile, Teketel, Ogutcen, Ezgi, Bett, Kirstin E., von Wettberg, Eric J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423085/
https://www.ncbi.nlm.nih.gov/pubmed/36051460
http://dx.doi.org/10.1111/eva.13467
Descripción
Sumario:The characterization and preservation of genetic variation in crops is critical to meeting the challenges of breeding in the face of changing climates and markets. In recent years, the use of single nucleotide polymorphisms (SNPs) has become routine, allowing us to understand the population structure, find divergent lines for crosses, and illuminate the origin of crops. However, the focus on SNPs overlooks other forms of variation, such as copy number variation (CNVs). Lentil is the third most important cold‐season legume and was domesticated in the Fertile Crescent. We genotyped 324 accessions that represent its global diversity, and using both SNPs and CNVs, we dissected the population structure and genetic variation, and identified candidate genes. Eight clusters were detected, most of them located in or near the Fertile Crescent, even though different clusters were present in distinct regions. The cluster from South Asia was particularly differentiated and presented low diversity, contrasting with the clusters from the Mediterranean and the northern temperate. Accessions from North America were mainly assigned to one cluster and were highly diverse, reflecting the efforts of breeding programs to integrate variation. Thirty‐three genes were identified as candidates under selection and among their functions were sporopollenin synthesis in pollen, a component of chlorophyll B reductase that partially determines the antenna size, and two genes related to the import system of chloroplasts. Eleven percent of all lentil genes and 21% of lentil disease resistance genes were affected by CNVs. The gene categories overrepresented in these genes were “enzymes,” “Cell Wall Organization,” and “external stimuli response.” All the genes found in the latter were associated with pathogen response. CNVs provided information about population structure and might have played a role in adaptation. The incorporation of CNVs in diversity studies is needed for a broader understanding of how they evolve and contribute to domestication.