Cargando…
MA-CharNet: Multi-angle fusion character recognition network
Irregular text recognition of natural scene is a challenging task due to large span of character angles and morphological diversity of a word. Recent work first rectifies curved word region, and then employ sequence algorithm to complete the recognition task. However, this strategy largely depends o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423680/ https://www.ncbi.nlm.nih.gov/pubmed/36037174 http://dx.doi.org/10.1371/journal.pone.0272601 |
Sumario: | Irregular text recognition of natural scene is a challenging task due to large span of character angles and morphological diversity of a word. Recent work first rectifies curved word region, and then employ sequence algorithm to complete the recognition task. However, this strategy largely depends on rectification quality of the text region, and cannot be applied to large difference between tilt angles of character. In this work, a novel anchor-free network structure of rotating character detection is proposed, which includes multiple sub-angle domain branch networks, and the corresponding branch network can be selected adaptively according to character tilt angle. Meanwhile, a curvature Adaptive Text linking method is proposed to connect the discrete strings detected on the two-dimensional plane into words according to people’s habits. We achieved state-of-the-art performance on two irregular texts (TotalText, CTW1500), outperforming state-of-the-art by 2.4% and 2.7%, respectively. The experimental results demonstrate the effectiveness of the proposed algorithm. |
---|