Cargando…
AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423702/ https://www.ncbi.nlm.nih.gov/pubmed/36038790 http://dx.doi.org/10.1007/s11547-022-01518-0 |
_version_ | 1784778078238539776 |
---|---|
author | Palmisano, Anna Vignale, Davide Boccia, Edda Nonis, Alessandro Gnasso, Chiara Leone, Riccardo Montagna, Marco Nicoletti, Valeria Bianchi, Antonello Giuseppe Brusamolino, Stefano Dorizza, Andrea Moraschini, Marco Veettil, Rahul Cereda, Alberto Toselli, Marco Giannini, Francesco Loffi, Marco Patelli, Gianluigi Monello, Alberto Iannopollo, Gianmarco Ippolito, Davide Mancini, Elisabetta Maria Pontone, Gianluca Vignali, Luigi Scarnecchia, Elisa Iannacone, Mario Baffoni, Lucio Sperandio, Massimiliano de Carlini, Caterina Chiara Sironi, Sandro Rapezzi, Claudio Antiga, Luca Jagher, Veronica Di Serio, Clelia Furlanello, Cesare Tacchetti, Carlo Esposito, Antonio |
author_facet | Palmisano, Anna Vignale, Davide Boccia, Edda Nonis, Alessandro Gnasso, Chiara Leone, Riccardo Montagna, Marco Nicoletti, Valeria Bianchi, Antonello Giuseppe Brusamolino, Stefano Dorizza, Andrea Moraschini, Marco Veettil, Rahul Cereda, Alberto Toselli, Marco Giannini, Francesco Loffi, Marco Patelli, Gianluigi Monello, Alberto Iannopollo, Gianmarco Ippolito, Davide Mancini, Elisabetta Maria Pontone, Gianluca Vignali, Luigi Scarnecchia, Elisa Iannacone, Mario Baffoni, Lucio Sperandio, Massimiliano de Carlini, Caterina Chiara Sironi, Sandro Rapezzi, Claudio Antiga, Luca Jagher, Veronica Di Serio, Clelia Furlanello, Cesare Tacchetti, Carlo Esposito, Antonio |
author_sort | Palmisano, Anna |
collection | PubMed |
description | PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web–mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816–0.867) on wave 1 and was used to build a 0–100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402–0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-022-01518-0. |
format | Online Article Text |
id | pubmed-9423702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Milan |
record_format | MEDLINE/PubMed |
spelling | pubmed-94237022022-08-30 AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients Palmisano, Anna Vignale, Davide Boccia, Edda Nonis, Alessandro Gnasso, Chiara Leone, Riccardo Montagna, Marco Nicoletti, Valeria Bianchi, Antonello Giuseppe Brusamolino, Stefano Dorizza, Andrea Moraschini, Marco Veettil, Rahul Cereda, Alberto Toselli, Marco Giannini, Francesco Loffi, Marco Patelli, Gianluigi Monello, Alberto Iannopollo, Gianmarco Ippolito, Davide Mancini, Elisabetta Maria Pontone, Gianluca Vignali, Luigi Scarnecchia, Elisa Iannacone, Mario Baffoni, Lucio Sperandio, Massimiliano de Carlini, Caterina Chiara Sironi, Sandro Rapezzi, Claudio Antiga, Luca Jagher, Veronica Di Serio, Clelia Furlanello, Cesare Tacchetti, Carlo Esposito, Antonio Radiol Med Cardiac Radiology PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web–mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816–0.867) on wave 1 and was used to build a 0–100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402–0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-022-01518-0. Springer Milan 2022-08-29 2022 /pmc/articles/PMC9423702/ /pubmed/36038790 http://dx.doi.org/10.1007/s11547-022-01518-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Cardiac Radiology Palmisano, Anna Vignale, Davide Boccia, Edda Nonis, Alessandro Gnasso, Chiara Leone, Riccardo Montagna, Marco Nicoletti, Valeria Bianchi, Antonello Giuseppe Brusamolino, Stefano Dorizza, Andrea Moraschini, Marco Veettil, Rahul Cereda, Alberto Toselli, Marco Giannini, Francesco Loffi, Marco Patelli, Gianluigi Monello, Alberto Iannopollo, Gianmarco Ippolito, Davide Mancini, Elisabetta Maria Pontone, Gianluca Vignali, Luigi Scarnecchia, Elisa Iannacone, Mario Baffoni, Lucio Sperandio, Massimiliano de Carlini, Caterina Chiara Sironi, Sandro Rapezzi, Claudio Antiga, Luca Jagher, Veronica Di Serio, Clelia Furlanello, Cesare Tacchetti, Carlo Esposito, Antonio AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title | AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title_full | AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title_fullStr | AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title_full_unstemmed | AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title_short | AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients |
title_sort | ai-score (artificial intelligence-sars cov2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in covid-19 patients |
topic | Cardiac Radiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423702/ https://www.ncbi.nlm.nih.gov/pubmed/36038790 http://dx.doi.org/10.1007/s11547-022-01518-0 |
work_keys_str_mv | AT palmisanoanna aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT vignaledavide aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT bocciaedda aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT nonisalessandro aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT gnassochiara aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT leonericcardo aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT montagnamarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT nicolettivaleria aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT bianchiantonellogiuseppe aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT brusamolinostefano aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT dorizzaandrea aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT moraschinimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT veettilrahul aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT ceredaalberto aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT tosellimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT gianninifrancesco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT loffimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT patelligianluigi aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT monelloalberto aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT iannopollogianmarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT ippolitodavide aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT mancinielisabettamaria aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT pontonegianluca aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT vignaliluigi aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT scarnecchiaelisa aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT iannaconemario aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT baffonilucio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT sperandiomassimiliano aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT decarlinicaterinachiara aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT sironisandro aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT rapezziclaudio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT antigaluca aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT jagherveronica aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT diserioclelia aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT furlanellocesare aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT tacchetticarlo aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients AT espositoantonio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients |