Cargando…

AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients

PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals...

Descripción completa

Detalles Bibliográficos
Autores principales: Palmisano, Anna, Vignale, Davide, Boccia, Edda, Nonis, Alessandro, Gnasso, Chiara, Leone, Riccardo, Montagna, Marco, Nicoletti, Valeria, Bianchi, Antonello Giuseppe, Brusamolino, Stefano, Dorizza, Andrea, Moraschini, Marco, Veettil, Rahul, Cereda, Alberto, Toselli, Marco, Giannini, Francesco, Loffi, Marco, Patelli, Gianluigi, Monello, Alberto, Iannopollo, Gianmarco, Ippolito, Davide, Mancini, Elisabetta Maria, Pontone, Gianluca, Vignali, Luigi, Scarnecchia, Elisa, Iannacone, Mario, Baffoni, Lucio, Sperandio, Massimiliano, de Carlini, Caterina Chiara, Sironi, Sandro, Rapezzi, Claudio, Antiga, Luca, Jagher, Veronica, Di Serio, Clelia, Furlanello, Cesare, Tacchetti, Carlo, Esposito, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423702/
https://www.ncbi.nlm.nih.gov/pubmed/36038790
http://dx.doi.org/10.1007/s11547-022-01518-0
_version_ 1784778078238539776
author Palmisano, Anna
Vignale, Davide
Boccia, Edda
Nonis, Alessandro
Gnasso, Chiara
Leone, Riccardo
Montagna, Marco
Nicoletti, Valeria
Bianchi, Antonello Giuseppe
Brusamolino, Stefano
Dorizza, Andrea
Moraschini, Marco
Veettil, Rahul
Cereda, Alberto
Toselli, Marco
Giannini, Francesco
Loffi, Marco
Patelli, Gianluigi
Monello, Alberto
Iannopollo, Gianmarco
Ippolito, Davide
Mancini, Elisabetta Maria
Pontone, Gianluca
Vignali, Luigi
Scarnecchia, Elisa
Iannacone, Mario
Baffoni, Lucio
Sperandio, Massimiliano
de Carlini, Caterina Chiara
Sironi, Sandro
Rapezzi, Claudio
Antiga, Luca
Jagher, Veronica
Di Serio, Clelia
Furlanello, Cesare
Tacchetti, Carlo
Esposito, Antonio
author_facet Palmisano, Anna
Vignale, Davide
Boccia, Edda
Nonis, Alessandro
Gnasso, Chiara
Leone, Riccardo
Montagna, Marco
Nicoletti, Valeria
Bianchi, Antonello Giuseppe
Brusamolino, Stefano
Dorizza, Andrea
Moraschini, Marco
Veettil, Rahul
Cereda, Alberto
Toselli, Marco
Giannini, Francesco
Loffi, Marco
Patelli, Gianluigi
Monello, Alberto
Iannopollo, Gianmarco
Ippolito, Davide
Mancini, Elisabetta Maria
Pontone, Gianluca
Vignali, Luigi
Scarnecchia, Elisa
Iannacone, Mario
Baffoni, Lucio
Sperandio, Massimiliano
de Carlini, Caterina Chiara
Sironi, Sandro
Rapezzi, Claudio
Antiga, Luca
Jagher, Veronica
Di Serio, Clelia
Furlanello, Cesare
Tacchetti, Carlo
Esposito, Antonio
author_sort Palmisano, Anna
collection PubMed
description PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web–mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816–0.867) on wave 1 and was used to build a 0–100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402–0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-022-01518-0.
format Online
Article
Text
id pubmed-9423702
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Milan
record_format MEDLINE/PubMed
spelling pubmed-94237022022-08-30 AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients Palmisano, Anna Vignale, Davide Boccia, Edda Nonis, Alessandro Gnasso, Chiara Leone, Riccardo Montagna, Marco Nicoletti, Valeria Bianchi, Antonello Giuseppe Brusamolino, Stefano Dorizza, Andrea Moraschini, Marco Veettil, Rahul Cereda, Alberto Toselli, Marco Giannini, Francesco Loffi, Marco Patelli, Gianluigi Monello, Alberto Iannopollo, Gianmarco Ippolito, Davide Mancini, Elisabetta Maria Pontone, Gianluca Vignali, Luigi Scarnecchia, Elisa Iannacone, Mario Baffoni, Lucio Sperandio, Massimiliano de Carlini, Caterina Chiara Sironi, Sandro Rapezzi, Claudio Antiga, Luca Jagher, Veronica Di Serio, Clelia Furlanello, Cesare Tacchetti, Carlo Esposito, Antonio Radiol Med Cardiac Radiology PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients’ risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web–mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816–0.867) on wave 1 and was used to build a 0–100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402–0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-022-01518-0. Springer Milan 2022-08-29 2022 /pmc/articles/PMC9423702/ /pubmed/36038790 http://dx.doi.org/10.1007/s11547-022-01518-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Cardiac Radiology
Palmisano, Anna
Vignale, Davide
Boccia, Edda
Nonis, Alessandro
Gnasso, Chiara
Leone, Riccardo
Montagna, Marco
Nicoletti, Valeria
Bianchi, Antonello Giuseppe
Brusamolino, Stefano
Dorizza, Andrea
Moraschini, Marco
Veettil, Rahul
Cereda, Alberto
Toselli, Marco
Giannini, Francesco
Loffi, Marco
Patelli, Gianluigi
Monello, Alberto
Iannopollo, Gianmarco
Ippolito, Davide
Mancini, Elisabetta Maria
Pontone, Gianluca
Vignali, Luigi
Scarnecchia, Elisa
Iannacone, Mario
Baffoni, Lucio
Sperandio, Massimiliano
de Carlini, Caterina Chiara
Sironi, Sandro
Rapezzi, Claudio
Antiga, Luca
Jagher, Veronica
Di Serio, Clelia
Furlanello, Cesare
Tacchetti, Carlo
Esposito, Antonio
AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title_full AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title_fullStr AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title_full_unstemmed AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title_short AI-SCoRE (artificial intelligence-SARS CoV2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients
title_sort ai-score (artificial intelligence-sars cov2 risk evaluation): a fast, objective and fully automated platform to predict the outcome in covid-19 patients
topic Cardiac Radiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423702/
https://www.ncbi.nlm.nih.gov/pubmed/36038790
http://dx.doi.org/10.1007/s11547-022-01518-0
work_keys_str_mv AT palmisanoanna aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT vignaledavide aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT bocciaedda aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT nonisalessandro aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT gnassochiara aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT leonericcardo aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT montagnamarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT nicolettivaleria aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT bianchiantonellogiuseppe aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT brusamolinostefano aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT dorizzaandrea aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT moraschinimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT veettilrahul aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT ceredaalberto aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT tosellimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT gianninifrancesco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT loffimarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT patelligianluigi aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT monelloalberto aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT iannopollogianmarco aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT ippolitodavide aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT mancinielisabettamaria aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT pontonegianluca aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT vignaliluigi aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT scarnecchiaelisa aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT iannaconemario aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT baffonilucio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT sperandiomassimiliano aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT decarlinicaterinachiara aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT sironisandro aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT rapezziclaudio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT antigaluca aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT jagherveronica aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT diserioclelia aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT furlanellocesare aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT tacchetticarlo aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients
AT espositoantonio aiscoreartificialintelligencesarscov2riskevaluationafastobjectiveandfullyautomatedplatformtopredicttheoutcomeincovid19patients