Cargando…
Multiclass feature selection with metaheuristic optimization algorithms: a review
Selecting relevant feature subsets is vital in machine learning, and multiclass feature selection is harder to perform since most classifications are binary. The feature selection problem aims at reducing the feature set dimension while maintaining the performance model accuracy. Datasets can be cla...
Autores principales: | Akinola, Olatunji O., Ezugwu, Absalom E., Agushaka, Jeffrey O., Zitar, Raed Abu, Abualigah, Laith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424068/ https://www.ncbi.nlm.nih.gov/pubmed/36060097 http://dx.doi.org/10.1007/s00521-022-07705-4 |
Ejemplares similares
-
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Differential Evolution and Its Applications in Image Processing Problems: A Comprehensive Review
por: Chakraborty, Sanjoy, et al.
Publicado: (2022) -
A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Evolutionary binary feature selection using adaptive ebola optimization search algorithm for high-dimensional datasets
por: Oyelade, Olaide N., et al.
Publicado: (2023)