Cargando…
Assessment of Artificial Intelligence Automatic Multiple Sclerosis Lesion Delineation Tool for Clinical Use
PURPOSE: To implement and validate an existing algorithm for automatic delineation of white matter lesions on magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) on a local single-center dataset. METHODS: We implemented a white matter hyperintensity segmentation model, based on...
Autores principales: | Hindsholm, Amalie Monberg, Cramer, Stig Præstekjær, Simonsen, Helle Juhl, Frederiksen, Jette Lautrup, Andersen, Flemming, Højgaard, Liselotte, Ladefoged, Claes Nøhr, Lindberg, Ulrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424132/ https://www.ncbi.nlm.nih.gov/pubmed/34542644 http://dx.doi.org/10.1007/s00062-021-01089-z |
Ejemplares similares
-
Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI
por: Hindsholm, Amalie Monberg, et al.
Publicado: (2023) -
Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting
por: Ladefoged, Claes Nøhr, et al.
Publicado: (2019) -
A zero-dose synthetic baseline for the personalized analysis of [(18)F]FDG-PET: Application in Alzheimer’s disease
por: Hinge, Christian, et al.
Publicado: (2022) -
PET/MR imaging of sarcomas: effect of PET quantification by classification of tissue
por: Ladefoged, Claes Nøhr, et al.
Publicado: (2014) -
Deep-learning-based attenuation correction in dynamic [(15)O]H(2)O studies using PET/MRI in healthy volunteers
por: Puig, Oriol, et al.
Publicado: (2021)