Cargando…
Machine learning in the detection and management of atrial fibrillation
Machine learning has immense novel but also disruptive potential for medicine. Numerous applications have already been suggested and evaluated concerning cardiovascular diseases. One important aspect is the detection and management of potentially thrombogenic arrhythmias such as atrial fibrillation....
Autores principales: | Wegner, Felix K., Plagwitz, Lucas, Doldi, Florian, Ellermann, Christian, Willy, Kevin, Wolfes, Julian, Sandmann, Sarah, Varghese, Julian, Eckardt, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424134/ https://www.ncbi.nlm.nih.gov/pubmed/35353207 http://dx.doi.org/10.1007/s00392-022-02012-3 |
Ejemplares similares
-
The Impact of Cardiac Devices on Patients’ Quality of Life—A Systematic Review and Meta-Analysis
por: Willy, Kevin, et al.
Publicado: (2022) -
Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation
por: Wolfes, Julian, et al.
Publicado: (2020) -
Psychological Aspects of Syncopes and Possible Association with Recurrency—The Role of Implantable Loop Recorders
por: Willy, Kevin, et al.
Publicado: (2022) -
Incidence and Predictors of Left Atrial Appendage Thrombus before Catheter Ablation of Thrombogenic Arrhythmias
por: Wegner, Felix K., et al.
Publicado: (2022) -
Safe electrophysiologic profile of dexmedetomidine in different experimental arrhythmia models
por: Ellermann, Christian, et al.
Publicado: (2021)