Cargando…
Bacteria related to tick-borne pathogen assemblages in Ornithodoros cf. hasei (Acari: Argasidae) and blood of the wild mammal hosts in the Orinoquia region, Colombia
Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial ass...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424158/ https://www.ncbi.nlm.nih.gov/pubmed/35829939 http://dx.doi.org/10.1007/s10493-022-00724-9 |
Sumario: | Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial assemblages present in Ornithodoros cf. hasei and its mammalian hosts, 84 ticks and 13 blood samples from bat hosts (Chiroptera) were selected, and the 16S rRNA gene V4 region was sequenced in five pools (each one related to each host-tick pairing). Bacterial taxonomic assignment analyses were performed by comparing operational taxonomic units (OTUs) shared between ticks and their host blood. This analysis showed the presence of Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%), and Actinobacteria (10.9%) within blood samples, and Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%), and Proteobacteria (9%) within ticks. Species related to potentially pathogenic genera were detected in ticks, such as Borrelia sp., Bartonella tamiae, Ehrlichia sp. and Rickettsia-like endosymbiont, and the presence of these organisms was found in all analyzed bat species (Cynomops planirostris, Molossus pretiosus, Noctilio albiventris), and O. cf. hasei. About 41–48.6% of bacterial OTUs (genera and species) were shared between ticks and the blood of bat hosts. Targeted metagenomic screening techniques allowed the detection of tick-associated pathogens for O. cf. hasei and small mammals for the first time, enabling future research on many of these pathogens. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10493-022-00724-9. |
---|