Cargando…
Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence
The Magnitude–Frequency-Distribution (MFD) of earthquakes is typically modeled with the (tapered) Gutenberg–Richter relation. The main parameter of this relation, the b-value, controls the relative rate of small and large earthquakes. Resolving spatiotemporal variations of the b-value is critical to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424211/ https://www.ncbi.nlm.nih.gov/pubmed/36038553 http://dx.doi.org/10.1038/s41467-022-32755-6 |
Sumario: | The Magnitude–Frequency-Distribution (MFD) of earthquakes is typically modeled with the (tapered) Gutenberg–Richter relation. The main parameter of this relation, the b-value, controls the relative rate of small and large earthquakes. Resolving spatiotemporal variations of the b-value is critical to understanding the earthquake occurrence process and improving earthquake forecasting. However, this variation is not well understood. Here we present remarkable MFD variability during the complex 2016/17 central Italy sequence using a high-resolution earthquake catalog. Isolating seismically active volumes (‘clusters’) reveals that the MFD differed in nearby clusters, varied or remained constant in time depending on the cluster, and increased in b-value in the cluster where the largest earthquake eventually occurred. These findings suggest that the fault system’s heterogeneity and complexity influence the MFD. Our findings raise the question “b-value of what?”: interpreting and using MFD variability needs a spatiotemporal scale that is physically meaningful, like the one proposed here. |
---|