Cargando…
Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated
Principal Component Analysis (PCA) is a multivariate analysis that reduces the complexity of datasets while preserving data covariance. The outcome can be visualized on colorful scatterplots, ideally with only a minimal loss of information. PCA applications, implemented in well-cited packages like E...
Autor principal: | Elhaik, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424212/ https://www.ncbi.nlm.nih.gov/pubmed/36038559 http://dx.doi.org/10.1038/s41598-022-14395-4 |
Ejemplares similares
-
Parameter estimation of the structured illumination pattern based on principal component analysis (PCA): PCA-SIM
por: Chen, Xin, et al.
Publicado: (2023) -
Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population
por: Ali, Asma’, et al.
Publicado: (2020) -
Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi
por: Yang, Zonglin, et al.
Publicado: (2022) -
Dosimetric assessment of prostate cancer patients through principal component analysis (PCA)
por: Gloi, Aime M, et al.
Publicado: (2013) -
pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components
por: Marini, Federico, et al.
Publicado: (2019)