Cargando…
Deep learning for non-parameterized MEMS structural design
The geometric designs of MEMS devices can profoundly impact their physical properties and eventual performances. However, it is challenging for researchers to rationally consider a large number of possible designs, as it would be very time- and resource-consuming to study all these cases using numer...
Autores principales: | Guo, Ruiqi, Sui, Fanping, Yue, Wei, Wang, Zekai, Pala, Sedat, Li, Kunying, Xu, Renxiao, Lin, Liwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424241/ https://www.ncbi.nlm.nih.gov/pubmed/36051747 http://dx.doi.org/10.1038/s41378-022-00432-9 |
Ejemplares similares
-
Deep Learning Based Cloud Cover Parameterization for ICON
por: Grundner, Arthur, et al.
Publicado: (2022) -
Dataset of a parameterized U-bend flow for deep learning applications
por: Decke, Jens, et al.
Publicado: (2023) -
On geometry parameterization for simulation-driven design closure of antenna structures
por: Koziel, Slawomir, et al.
Publicado: (2021) -
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
por: Zhu, Yuchao, et al.
Publicado: (2022) -
A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure
por: Yang, Chaoxiang, et al.
Publicado: (2022)