Cargando…

Degenerate boundaries for multiple-alternative decisions

Integration-to-threshold models of two-choice perceptual decision making have guided our understanding of human and animal behavior and neural processing. Although such models seem to extend naturally to multiple-choice decision making, consensus on a normative framework has yet to emerge, and hence...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker, Sophie-Anne, Griffith, Thom, Lepora, Nathan F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424291/
https://www.ncbi.nlm.nih.gov/pubmed/36038538
http://dx.doi.org/10.1038/s41467-022-32741-y
Descripción
Sumario:Integration-to-threshold models of two-choice perceptual decision making have guided our understanding of human and animal behavior and neural processing. Although such models seem to extend naturally to multiple-choice decision making, consensus on a normative framework has yet to emerge, and hence the implications of threshold characteristics for multiple choices have only been partially explored. Here we consider sequential Bayesian inference and a conceptualisation of decision making as a particle diffusing in n-dimensions. We show by simulation that, within a parameterised subset of time-independent boundaries, the optimal decision boundaries comprise a degenerate family of nonlinear structures that jointly depend on the state of multiple accumulators and speed-accuracy trade-offs. This degeneracy is contrary to current 2-choice results where there is a single optimal threshold. Such boundaries support both stationary and collapsing thresholds as optimal strategies for decision-making, both of which result from stationary representations of nonlinear boundaries. Our findings point towards a normative theory of multiple-choice decision making, provide a characterisation of optimal decision thresholds under this framework, and inform the debate between stationary and dynamic decision boundaries for optimal decision making.