Cargando…
MNet-10: A robust shallow convolutional neural network model performing ablation study on medical images assessing the effectiveness of applying optimal data augmentation technique
Interpretation of medical images with a computer-aided diagnosis (CAD) system is arduous because of the complex structure of cancerous lesions in different imaging modalities, high degree of resemblance between inter-classes, presence of dissimilar characteristics in intra-classes, scarcity of medic...
Autores principales: | Montaha, Sidratul, Azam, Sami, Rafid, A. K. M. Rakibul Haque, Hasan, Md. Zahid, Karim, Asif, Hasib, Khan Md., Patel, Shobhit K., Jonkman, Mirjam, Mannan, Zubaer Ibna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424498/ https://www.ncbi.nlm.nih.gov/pubmed/36052321 http://dx.doi.org/10.3389/fmed.2022.924979 |
Ejemplares similares
-
A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity
por: Montaha, Sidratul, et al.
Publicado: (2022) -
Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases
por: Azam, Sami, et al.
Publicado: (2023) -
BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images
por: Montaha, Sidratul, et al.
Publicado: (2021) -
An Effective Ensemble Machine Learning Approach to Classify Breast Cancer Based on Feature Selection and Lesion Segmentation Using Preprocessed Mammograms
por: Rafid, A. K. M. Rakibul Haque, et al.
Publicado: (2022) -
An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study
por: Azam, Sami, et al.
Publicado: (2023)