Cargando…
A new improved maximal relevance and minimal redundancy method based on feature subset
Feature selection plays a very significant role for the success of pattern recognition and data mining. Based on the maximal relevance and minimal redundancy (mRMR) method, combined with feature subset, this paper proposes an improved maximal relevance and minimal redundancy (ImRMR) feature selectio...
Autores principales: | Xie, Shanshan, Zhang, Yan, Lv, Danjv, Chen, Xu, Lu, Jing, Liu, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424812/ https://www.ncbi.nlm.nih.gov/pubmed/36060093 http://dx.doi.org/10.1007/s11227-022-04763-2 |
Ejemplares similares
-
Using Minimal-Redundant and Maximal-Relevant Whole-Brain Functional Connectivity to Classify Bipolar Disorder
por: Chen, Yen-Ling, et al.
Publicado: (2020) -
Birdsong classification based on ensemble multi-scale convolutional neural network
por: Liu, Jiang, et al.
Publicado: (2022) -
Ensemble Fuzzy Feature Selection Based on Relevancy, Redundancy, and Dependency Criteria
por: Salem, Omar A. M., et al.
Publicado: (2020) -
Relevant and Non-Redundant Feature Selection for Cancer Classification and Subtype Detection
por: Rana, Pratip, et al.
Publicado: (2021) -
Birdsongs recognition based on ensemble ELM with multi-strategy differential evolution
por: Xie, Shanshan, et al.
Publicado: (2022)