Cargando…
SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis
Machine learning methods have revolutionized studies in several areas of knowledge, helping to understand and extract information from experimental data. Recently, these data-driven methods have also been used to discover structures of mathematical models. The sparse identification of nonlinear dyna...
Autores principales: | Naozuka, Gustavo T., Rocha, Heber L., Silva, Renato S., Almeida, Regina C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424817/ https://www.ncbi.nlm.nih.gov/pubmed/36060282 http://dx.doi.org/10.1007/s11071-022-07755-2 |
Ejemplares similares
-
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics
por: Kaheman, Kadierdan, et al.
Publicado: (2020) -
Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method
por: Jiang, Yu-Xin, et al.
Publicado: (2021) -
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
por: Fasel, U., et al.
Publicado: (2022) -
Framework for enhancing the estimation of model parameters for data with a high level of uncertainty
por: Libotte, Gustavo B., et al.
Publicado: (2022) -
CARTmath—A Mathematical Model of CAR-T Immunotherapy in Preclinical Studies of Hematological Cancers
por: Barros, Luciana R. C., et al.
Publicado: (2021)