Cargando…
Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning
PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424967/ https://www.ncbi.nlm.nih.gov/pubmed/35998059 http://dx.doi.org/10.1167/tvst.11.8.22 |
_version_ | 1784778343216840704 |
---|---|
author | Hemelings, Ruben Elen, Bart Barbosa-Breda, João Bellon, Erwin Blaschko, Matthew B. De Boever, Patrick Stalmans, Ingeborg |
author_facet | Hemelings, Ruben Elen, Bart Barbosa-Breda, João Bellon, Erwin Blaschko, Matthew B. De Boever, Patrick Stalmans, Ingeborg |
author_sort | Hemelings, Ruben |
collection | PubMed |
description | PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF sensitivity from unsegmented optical coherence tomography (OCT) scans. METHODS: DL regression models have been trained with four imaging modalities (circumpapillary OCT at 3.5 mm, 4.1 mm, and 4.7 mm diameter) and scanning laser ophthalmoscopy en face images to estimate mean deviation (MD) and 52 threshold values. This retrospective study used data from patients who underwent a complete glaucoma examination, including a reliable Humphrey Field Analyzer (HFA) 24-2 SITA Standard (SS) VF exam and a SPECTRALIS OCT. RESULTS: For MD estimation, weighted prediction averaging of all four individuals yielded a mean absolute error (MAE) of 2.89 dB (2.50–3.30) on 186 test images, reducing the baseline by 54% (MAEdecr%). For 52 VF threshold values’ estimation, the weighted ensemble model resulted in an MAE of 4.82 dB (4.45–5.22), representing an MAEdecr% of 38% from baseline when predicting the pointwise mean value. DL managed to explain 75% and 58% of the variance (R(2)) in MD and pointwise sensitivity estimation, respectively. CONCLUSIONS: Deep learning can estimate global and pointwise VF sensitivities that fall almost entirely within the 90% test–retest confidence intervals of the 24-2 SS test. TRANSLATIONAL RELEVANCE: Fast and consistent VF prediction from unsegmented OCT scans could become a solution for visual function estimation in patients unable to perform reliable VF exams. |
format | Online Article Text |
id | pubmed-9424967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-94249672022-08-31 Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning Hemelings, Ruben Elen, Bart Barbosa-Breda, João Bellon, Erwin Blaschko, Matthew B. De Boever, Patrick Stalmans, Ingeborg Transl Vis Sci Technol Artificial Intelligence PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF sensitivity from unsegmented optical coherence tomography (OCT) scans. METHODS: DL regression models have been trained with four imaging modalities (circumpapillary OCT at 3.5 mm, 4.1 mm, and 4.7 mm diameter) and scanning laser ophthalmoscopy en face images to estimate mean deviation (MD) and 52 threshold values. This retrospective study used data from patients who underwent a complete glaucoma examination, including a reliable Humphrey Field Analyzer (HFA) 24-2 SITA Standard (SS) VF exam and a SPECTRALIS OCT. RESULTS: For MD estimation, weighted prediction averaging of all four individuals yielded a mean absolute error (MAE) of 2.89 dB (2.50–3.30) on 186 test images, reducing the baseline by 54% (MAEdecr%). For 52 VF threshold values’ estimation, the weighted ensemble model resulted in an MAE of 4.82 dB (4.45–5.22), representing an MAEdecr% of 38% from baseline when predicting the pointwise mean value. DL managed to explain 75% and 58% of the variance (R(2)) in MD and pointwise sensitivity estimation, respectively. CONCLUSIONS: Deep learning can estimate global and pointwise VF sensitivities that fall almost entirely within the 90% test–retest confidence intervals of the 24-2 SS test. TRANSLATIONAL RELEVANCE: Fast and consistent VF prediction from unsegmented OCT scans could become a solution for visual function estimation in patients unable to perform reliable VF exams. The Association for Research in Vision and Ophthalmology 2022-08-23 /pmc/articles/PMC9424967/ /pubmed/35998059 http://dx.doi.org/10.1167/tvst.11.8.22 Text en Copyright 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Artificial Intelligence Hemelings, Ruben Elen, Bart Barbosa-Breda, João Bellon, Erwin Blaschko, Matthew B. De Boever, Patrick Stalmans, Ingeborg Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title | Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title_full | Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title_fullStr | Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title_full_unstemmed | Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title_short | Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning |
title_sort | pointwise visual field estimation from optical coherence tomography in glaucoma using deep learning |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424967/ https://www.ncbi.nlm.nih.gov/pubmed/35998059 http://dx.doi.org/10.1167/tvst.11.8.22 |
work_keys_str_mv | AT hemelingsruben pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT elenbart pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT barbosabredajoao pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT bellonerwin pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT blaschkomatthewb pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT deboeverpatrick pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning AT stalmansingeborg pointwisevisualfieldestimationfromopticalcoherencetomographyinglaucomausingdeeplearning |