Cargando…
Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning
PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception backbone that estimates pointwise and overall VF s...
Autores principales: | Hemelings, Ruben, Elen, Bart, Barbosa-Breda, João, Bellon, Erwin, Blaschko, Matthew B., De Boever, Patrick, Stalmans, Ingeborg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424967/ https://www.ncbi.nlm.nih.gov/pubmed/35998059 http://dx.doi.org/10.1167/tvst.11.8.22 |
Ejemplares similares
-
Deep learning on fundus images detects glaucoma beyond the optic disc
por: Hemelings, Ruben, et al.
Publicado: (2021) -
A generalizable deep learning regression model for automated glaucoma screening from fundus images
por: Hemelings, Ruben, et al.
Publicado: (2023) -
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
por: Chen, Zhiqi, et al.
Publicado: (2023) -
Etiology of Macular Edema Defined by Deep Learning in Optical Coherence Tomography Scans
por: Padilla-Pantoja, Fabio Daniel, et al.
Publicado: (2022) -
A review of generative adversarial network applications in optical coherence tomography image analysis
por: Kugelman, Jason, et al.
Publicado: (2022)