Cargando…
Multi-center verification of the influence of data ratio of training sets on test results of an AI system for detecting early gastric cancer based on the YOLO-v4 algorithm
OBJECTIVE: Convolutional Neural Network(CNN) is increasingly being applied in the diagnosis of gastric cancer. However, the impact of proportion of internal data in the training set on test results has not been sufficiently studied. Here, we constructed an artificial intelligence (AI) system called...
Autores principales: | Jin, Tao, Jiang, Yancai, Mao, Boneng, Wang, Xing, Lu, Bo, Qian, Ji, Zhou, Hutao, Ma, Tieliang, Zhang, Yefei, Li, Sisi, Shi, Yun, Yao, Zhendong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425091/ https://www.ncbi.nlm.nih.gov/pubmed/36052264 http://dx.doi.org/10.3389/fonc.2022.953090 |
Ejemplares similares
-
Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on YOLO-V3 Algorithm
por: Yao, Zhendong, et al.
Publicado: (2022) -
YOLO-SASE: An Improved YOLO Algorithm for the Small Targets Detection in Complex Backgrounds
por: Zhou, Xiao, et al.
Publicado: (2022) -
Yolo-Based Traffic Sign Recognition Algorithm
por: Li, Ming, et al.
Publicado: (2022) -
A YOLO-based AI system for classifying calcifications on spot magnification mammograms
por: Chen, Jian-Ling, et al.
Publicado: (2023) -
Retracted: Yolo-Based Traffic Sign Recognition Algorithm
por: Intelligence and Neuroscience, Computational
Publicado: (2023)