Cargando…
Social media-based COVID-19 sentiment classification model using Bi-LSTM
Internet public social media and forums provide a convenient channel for people concerned about public health issues, such as COVID-19, to share and discuss information/misinformation with each other. In this paper, we propose a natural language processing (NLP) method based on Bidirectional Long Sh...
Autores principales: | Arbane, Mohamed, Benlamri, Rachid, Brik, Youcef, Alahmar, Ayman Diyab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425711/ https://www.ncbi.nlm.nih.gov/pubmed/36060151 http://dx.doi.org/10.1016/j.eswa.2022.118710 |
Ejemplares similares
-
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Automated clinical pathway standardization using SNOMED CT- based semantic relatedness
por: Alahmar, Ayman, et al.
Publicado: (2022) -
Sentiment Analysis: An ERNIE-BiLSTM Approach to Bullet Screen Comments
por: Hsieh, Yen-Hao, et al.
Publicado: (2022) -
COV-SNET: A deep learning model for X-ray-based COVID-19 classification()
por: Hertel, Robert, et al.
Publicado: (2021) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020)