Cargando…
Diagnostic model based on bioinformatics and machine learning to distinguish Kawasaki disease using multiple datasets
BACKGROUND: Kawasaki disease (KD), characterized by systemic vasculitis, is the leading cause of acquired heart disease in children. Herein, we developed a diagnostic model, with some prognosis ability, to help distinguish children with KD. METHODS: Gene expression datasets were downloaded from Gene...
Autores principales: | Zhang, Mengyi, Ke, Bocuo, Zhuo, Huichuan, Guo, Binhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425821/ https://www.ncbi.nlm.nih.gov/pubmed/36042431 http://dx.doi.org/10.1186/s12887-022-03557-y |
Ejemplares similares
-
A machine learning model for distinguishing Kawasaki disease from sepsis
por: Li, Chi, et al.
Publicado: (2023) -
Use of bioinformatic analyses in identifying characteristic genes and mechanisms active in the progression of idiopathic thrombocytopenic purpura in individuals with different phenotypes
por: Zhang, Mengyi, et al.
Publicado: (2020) -
A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses
por: Ling, Xuefeng B, et al.
Publicado: (2011) -
Explainable deep learning algorithm for distinguishing incomplete Kawasaki disease by coronary artery lesions on echocardiographic imaging
por: Lee, Haeyun, et al.
Publicado: (2022) -
Using bioinformatics analysis to screen abnormal methylated differentially expressed hub genes of Kawasaki disease and construct diagnostic model
por: Sun, Hongxiao, et al.
Publicado: (2022)