Cargando…

Integrative genomic and transcriptomic analyses illuminate the ontology of HER2-low breast carcinomas

BACKGROUND: The “HER2-low” nomenclature identifies breast carcinomas (BCs) displaying a HER2 score of 1+/2+ in immunohistochemistry and lacking ERBB2 amplification. Whether HER2-low BCs (HLBCs) constitute a distinct entity is debated. METHODS: We performed DNA and RNA high-throughput analysis on 99...

Descripción completa

Detalles Bibliográficos
Autores principales: Berrino, Enrico, Annaratone, Laura, Bellomo, Sara Erika, Ferrero, Giulio, Gagliardi, Amedeo, Bragoni, Alberto, Grassini, Dora, Guarrera, Simonetta, Parlato, Caterina, Casorzo, Laura, Panero, Mara, Sarotto, Ivana, Giordano, Silvia, Cereda, Matteo, Montemurro, Filippo, Ponzone, Riccardo, Crosetto, Nicola, Naccarati, Alessio, Sapino, Anna, Marchiò, Caterina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426037/
https://www.ncbi.nlm.nih.gov/pubmed/36038884
http://dx.doi.org/10.1186/s13073-022-01104-z
Descripción
Sumario:BACKGROUND: The “HER2-low” nomenclature identifies breast carcinomas (BCs) displaying a HER2 score of 1+/2+ in immunohistochemistry and lacking ERBB2 amplification. Whether HER2-low BCs (HLBCs) constitute a distinct entity is debated. METHODS: We performed DNA and RNA high-throughput analysis on 99 HLBC samples (n = 34 cases with HER2 score 1+/HLBC-1, n = 15 cases with HER2 score 2+ and ERBB2 not amplified/HLBC-2N, and n = 50 cases with score 2+ and ERBB2 copy number in the equivocal range/HLBC-2E). We compared the mutation rates with data from 1317 samples in the Memorial Sloan-Kettering Cancer Center (MSKCC) BC cohort and gene expression data with those from an internal cohort of HER2-negative and HER2-positive BCs. RESULTS: The most represented mutations affected PIK3CA (31/99, 31%), GATA3 (18/99, 18%), TP53 (17/99, 17%), and ERBB2 (8/99, 8%, private to HLBC-2E). Tumor mutational burden was significantly higher in HLBC-1 compared to HLBC-2E/N (P = 0.04). Comparison of mutation spectra revealed that HLBCs were different from both HER2-negative and HER2-positive BCs, with HLBC-1 resembling more HER2-negative tumors and HLBC-2 mutationally related to HER2-addicted tumors. Potentially actionable alterations (annotated by using OncoKB/ESCAT classes) affected 52 patients. Intra-group gene expression revealed overlapping features between HLBC-1 and control HER2-negative BCs, whereas the HLBC-2E tumors showed the highest diversity overall. The RNA-based class discovery analysis unveiled four subsets of tumors with (i) lymphocyte activation, (ii) unique enrichment in HER2-related features, (iii) stromal remodeling alterations, and (iv) actionability of PIK3CA mutations (LAURA classification). CONCLUSIONS: HLBCs harbor distinct genomic features when compared with HER2-positive and HER2-negative BCs; however, differences across IHC classes were also unveiled thus dissecting the full picture of heterogeneity across HER2-low disease. The HLBC-2E category harbors most distinctive features, whereas HLBC-1 seems superimposable to HER2-negative disease. Further studies are needed to ascertain whether the four genomic-driver classes of the LAURA classification hold prognostic and/or predictive implications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01104-z.