Cargando…

Gas chromatography-mass spectrometry (GC–MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential

The bryophytes consist of liverworts, mosses, and hornworts, among which the liverworts are quite different in having cellular oil bodies and contain numerous terpenoids, acetogenins, quinones, phenylpropanoids, flavonoids, etc. These metabolites exhibit interesting biological activity such as aller...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Supriya, Singh, Swati, Sharma, Rimjhim, Vats, Sharad, Alam, Afroz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426370/
https://www.ncbi.nlm.nih.gov/pubmed/36061344
http://dx.doi.org/10.1007/s42535-022-00458-4
Descripción
Sumario:The bryophytes consist of liverworts, mosses, and hornworts, among which the liverworts are quite different in having cellular oil bodies and contain numerous terpenoids, acetogenins, quinones, phenylpropanoids, flavonoids, etc. These metabolites exhibit interesting biological activity such as allergenic response, insecticide, cytotoxic, neurotrophic, antimicrobial, and anti-HIV actions, etc. Though several bioactive compounds have been isolated in many liverworts, yet most of the liverworts have been unexplored till date regarding their phytochemistry. The ability of liverworts to generate a wide range of important phytochemicals makes them a hoard of bioactive compounds. In the past, a few species of bryophytes have been evaluated against a few viruses and interesting results were obtained that showed their role as an immunity enhancer against viral infection. The phytoconstituents found in liverworts and mosses can be useful to increase human immunity against a variety of viruses, including SARS-CoV-2. Keeping this in view, one of the most developed and robust metabolomics technologies, Gas chromatography-mass spectroscopy (GC–MS) was used to estimate the various phytoconstituents found in a commonly growing thalloid liverwort, Plagiochasma appendiculatum, and moss Sphagnum fimbriatum. The obtained profiles were appraised for their bioactive potential and probable role as antiviral agents.