Cargando…
The Microbiota-Gut-Brain Axis in Sepsis-Associated Encephalopathy
The gut microbiota is increasingly being found to contribute to the etiology and severity of multiple diseases, including within the central nervous system (CNS). This microbiota-gut-brain (MGB) axis facilitates communication between gut microbes and the brain to regulate behavior. Communication alo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426489/ https://www.ncbi.nlm.nih.gov/pubmed/35950760 http://dx.doi.org/10.1128/msystems.00533-22 |
Sumario: | The gut microbiota is increasingly being found to contribute to the etiology and severity of multiple diseases, including within the central nervous system (CNS). This microbiota-gut-brain (MGB) axis facilitates communication between gut microbes and the brain to regulate behavior. Communication along the axis occurs via multiple routes, including the vagus nerve, gut-derived neurohormones, and immune cells, and more recently, a role for microbial metabolites has been uncovered. This commentary highlights the recent findings by H. Fang, Y. Wang, J. Deng, H. Zhang, et al. (mSystems 7:e01399-21, 2022, https://doi.org/10.1128/msystems.01399-21) on the role of gut microbiota and bacterial metabolites in mediating sepsis-associated encephalopathy in a mouse model of cecal puncture and ligation. |
---|