Cargando…

Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users

A previous study demonstrated that consonant recognition improved significantly in normal hearing listeners when useful frequency and time ranges were intensified by 6 dB. The goal of this study was to determine whether bilateral cochlear implant (BCI) and bilateral hearing aid (BHA) users experienc...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Yang-Soo, Drew, Carrie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426545/
https://www.ncbi.nlm.nih.gov/pubmed/36051201
http://dx.doi.org/10.3389/fpsyg.2022.918914
_version_ 1784778705729486848
author Yoon, Yang-Soo
Drew, Carrie
author_facet Yoon, Yang-Soo
Drew, Carrie
author_sort Yoon, Yang-Soo
collection PubMed
description A previous study demonstrated that consonant recognition improved significantly in normal hearing listeners when useful frequency and time ranges were intensified by 6 dB. The goal of this study was to determine whether bilateral cochlear implant (BCI) and bilateral hearing aid (BHA) users experienced similar enhancement on consonant recognition with these intensified spectral and temporal cues in noise. In total, 10 BCI and 10 BHA users participated in a recognition test using 14 consonants. For each consonant, we used the frequency and time ranges that are critical for its recognition (called “target frequency and time range”), identified from normal hearing listeners. Then, a signal processing tool called the articulation-index gram (AI-Gram) was utilized to add a 6 dB gain to target frequency and time ranges. Consonant recognition was monaurally and binaurally measured under two signal processing conditions, unprocessed and intensified target frequency and time ranges at +5 and +10 dB signal-to-noise ratio and in quiet conditions. We focused on three comparisons between the BCI and BHA groups: (1) AI-Gram benefits (i.e., before and after intensifying target ranges by 6 dB), (2) enhancement in binaural benefits (better performance with bilateral devices compared to the better ear alone) via the AI-Gram processing, and (3) reduction in binaural interferences (poorer performance with bilateral devices compared to the better ear alone) via the AI-Gram processing. The results showed that the mean AI-Gram benefit was significantly improved for the BCI (max 5.9%) and BHA (max 5.2%) groups. However, the mean binaural benefit was not improved after AI-Gram processing. Individual data showed wide ranges of the AI-Gram benefit (max −1 to 23%) and binaural benefit (max −7.6 to 13%) for both groups. Individual data also showed a decrease in binaural interference in both groups after AI-Gram processing. These results suggest that the frequency and time ranges, intensified by the AI-Gram processing, contribute to consonant enhancement for monaural and binaural listening and both BCI and BHA technologies. The intensified frequency and time ranges helped to reduce binaural interference but contributed less to the synergistic binaural benefit in consonant recognition for both groups.
format Online
Article
Text
id pubmed-9426545
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-94265452022-08-31 Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users Yoon, Yang-Soo Drew, Carrie Front Psychol Psychology A previous study demonstrated that consonant recognition improved significantly in normal hearing listeners when useful frequency and time ranges were intensified by 6 dB. The goal of this study was to determine whether bilateral cochlear implant (BCI) and bilateral hearing aid (BHA) users experienced similar enhancement on consonant recognition with these intensified spectral and temporal cues in noise. In total, 10 BCI and 10 BHA users participated in a recognition test using 14 consonants. For each consonant, we used the frequency and time ranges that are critical for its recognition (called “target frequency and time range”), identified from normal hearing listeners. Then, a signal processing tool called the articulation-index gram (AI-Gram) was utilized to add a 6 dB gain to target frequency and time ranges. Consonant recognition was monaurally and binaurally measured under two signal processing conditions, unprocessed and intensified target frequency and time ranges at +5 and +10 dB signal-to-noise ratio and in quiet conditions. We focused on three comparisons between the BCI and BHA groups: (1) AI-Gram benefits (i.e., before and after intensifying target ranges by 6 dB), (2) enhancement in binaural benefits (better performance with bilateral devices compared to the better ear alone) via the AI-Gram processing, and (3) reduction in binaural interferences (poorer performance with bilateral devices compared to the better ear alone) via the AI-Gram processing. The results showed that the mean AI-Gram benefit was significantly improved for the BCI (max 5.9%) and BHA (max 5.2%) groups. However, the mean binaural benefit was not improved after AI-Gram processing. Individual data showed wide ranges of the AI-Gram benefit (max −1 to 23%) and binaural benefit (max −7.6 to 13%) for both groups. Individual data also showed a decrease in binaural interference in both groups after AI-Gram processing. These results suggest that the frequency and time ranges, intensified by the AI-Gram processing, contribute to consonant enhancement for monaural and binaural listening and both BCI and BHA technologies. The intensified frequency and time ranges helped to reduce binaural interference but contributed less to the synergistic binaural benefit in consonant recognition for both groups. Frontiers Media S.A. 2022-08-16 /pmc/articles/PMC9426545/ /pubmed/36051201 http://dx.doi.org/10.3389/fpsyg.2022.918914 Text en Copyright © 2022 Yoon and Drew. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychology
Yoon, Yang-Soo
Drew, Carrie
Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title_full Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title_fullStr Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title_full_unstemmed Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title_short Effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
title_sort effects of the intensified frequency and time ranges on consonant enhancement in bilateral cochlear implant and hearing aid users
topic Psychology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426545/
https://www.ncbi.nlm.nih.gov/pubmed/36051201
http://dx.doi.org/10.3389/fpsyg.2022.918914
work_keys_str_mv AT yoonyangsoo effectsoftheintensifiedfrequencyandtimerangesonconsonantenhancementinbilateralcochlearimplantandhearingaidusers
AT drewcarrie effectsoftheintensifiedfrequencyandtimerangesonconsonantenhancementinbilateralcochlearimplantandhearingaidusers