Cargando…

Genetic and Structural Variation in the O-Antigen of Salmonella enterica Serovar Typhimurium Isolates Causing Bloodstream Infections in the Democratic Republic of the Congo

Salmonella enterica serovar Typhimurium causes a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. No licensed vaccine is available, but O-antigen-based candidates are in development, as the O-antigen moiety of lipopolysaccharides is the princ...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Puyvelde, Sandra, Gasperini, Gianmarco, Biggel, Michael, Phoba, Marie-France, Raso, Maria Michelina, de Block, Tessa, Vanheer, Leen N., Deborggraeve, Stijn, Vandenberg, Olivier, Thomson, Nicholas, Ravenscroft, Neil, Maclennan, Calman A., Bellich, Barbara, Cescutti, Paola, Dougan, Gordon, Jacobs, Jan, Lunguya, Octavie, Micoli, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426603/
https://www.ncbi.nlm.nih.gov/pubmed/35862803
http://dx.doi.org/10.1128/mbio.00374-22
Descripción
Sumario:Salmonella enterica serovar Typhimurium causes a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. No licensed vaccine is available, but O-antigen-based candidates are in development, as the O-antigen moiety of lipopolysaccharides is the principal target of protective immunity. The vaccines under development are designed based on isolates with O-antigen O-acetylated at position C-2 of abequose, giving the O:5 antigen. Serotyping data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without O:5. The importance and distribution of this loss of O:5 antigen in the population as well as the genetic mechanism responsible for the loss and chemical characteristics of the O-antigen are poorly understood. In this study, we Illumina whole-genome sequenced 354 Salmonella Typhimurium isolates from the DRC, which were isolated between 2002 and 2017. We used genomics and phylogenetics combined with chemical approaches ((1)H nuclear magnetic resonance [NMR], high-performance anion-exchange chromatography with pulsed amperometric detection [HPAEC-PAD], high-performance liquid chromatography–PAD [HPLC-PAD], and HPLC-size exclusion chromatography [HPLC-SEC]) to characterize the O-antigen features within the bacterial population. We observed convergent evolution toward the loss of the O:5 epitope predominantly caused by recombination events in a single gene, the O-acetyltransferase gene oafA. In addition, we observe further O-antigen variations, including O-acetylation of the rhamnose residue, different levels of glucosylation, and the absence of O-antigen repeating units. Large recombination events underlying O-antigen variation were resolved using long-read MinION sequencing. Our study suggests evolutionary pressure toward O-antigen variants in a region where invasive disease by Salmonella Typhimurium is highly endemic. This needs to be taken into account when developing O-antigen-based vaccines, as it might impact the breadth of coverage in such regions.