Cargando…
Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram
OBJECTIVE: The purpose of this study was to develop and internally validate a prediction nomogram model in patients undergoing lumbar fusion surgery. METHODS: A total of 310 patients undergoing lumbar fusion surgery were reviewed, and the median and quartile interval were used to describe postoperat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426777/ https://www.ncbi.nlm.nih.gov/pubmed/36051703 http://dx.doi.org/10.3389/fsurg.2022.925354 |
_version_ | 1784778754002780160 |
---|---|
author | Lu, Chen-Xin Huang, Zhi-Bin Chen, Xiao-Mei Wu, Xiao-Dan |
author_facet | Lu, Chen-Xin Huang, Zhi-Bin Chen, Xiao-Mei Wu, Xiao-Dan |
author_sort | Lu, Chen-Xin |
collection | PubMed |
description | OBJECTIVE: The purpose of this study was to develop and internally validate a prediction nomogram model in patients undergoing lumbar fusion surgery. METHODS: A total of 310 patients undergoing lumbar fusion surgery were reviewed, and the median and quartile interval were used to describe postoperative length of stay (PLOS). Patients with PLOS > P(75) were defined as prolonged PLOS. The least absolute shrinkage and selection operator (LASSO) regression was used to filter variables for building the prolonged PLOS risk model. Multivariable logistic regression analysis was applied to build a predictive model using the variables selected in the LASSO regression model. The area under the ROC curve (AUC) of the predicting model was calculated and significant test was performed. The Kappa consistency test between the predictive model and the actual diagnosis was performed. Discrimination, calibration, and the clinical usefulness of the predicting model were assessed using the C-index, calibration plot, and decision curve analysis. Internal validation was assessed using the bootstrapping validation. RESULTS: According to the interquartile range of PLOS in a total of 310 patients, the PLOS of 235 patients was ≤P(75) (7 days) (normal PLOS), and the PLOS of 75 patients was > P(75) (prolonged PLOS). The LASSO selected predictors that were used to build the prediction nomogram included BMI, diabetes, hypertension, duration of surgery, duration of anesthesia, anesthesia type, intraoperative blood loss, sufentanil for postoperative analgesia, and postoperative complication. The model displayed good discrimination with an AUC value of 0.807 (95% CI: 0.758–0.849, P < 0.001), a Kappa value of 0.5186 (cutoff value, 0.2445, P < 0.001), and good calibration. A high C-index value of 0.776 could still be reached in the interval validation. Decision curve analysis showed that the prolonged PLOS nomogram was clinically useful when intervention was decided at the prolonged PLOS possibility threshold of 3%. CONCLUSIONS: This study developed a novel nomogram with a relatively good accuracy to help clinicians access the risk of prolonged PLOS in lumbar fusion surgery patients. By an estimate of individual risk, surgeons and anesthesiologists may shorten PLOS and accelerate postoperative recovery of lumbar fusion surgery through more accurate individualized treatment. |
format | Online Article Text |
id | pubmed-9426777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94267772022-08-31 Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram Lu, Chen-Xin Huang, Zhi-Bin Chen, Xiao-Mei Wu, Xiao-Dan Front Surg Surgery OBJECTIVE: The purpose of this study was to develop and internally validate a prediction nomogram model in patients undergoing lumbar fusion surgery. METHODS: A total of 310 patients undergoing lumbar fusion surgery were reviewed, and the median and quartile interval were used to describe postoperative length of stay (PLOS). Patients with PLOS > P(75) were defined as prolonged PLOS. The least absolute shrinkage and selection operator (LASSO) regression was used to filter variables for building the prolonged PLOS risk model. Multivariable logistic regression analysis was applied to build a predictive model using the variables selected in the LASSO regression model. The area under the ROC curve (AUC) of the predicting model was calculated and significant test was performed. The Kappa consistency test between the predictive model and the actual diagnosis was performed. Discrimination, calibration, and the clinical usefulness of the predicting model were assessed using the C-index, calibration plot, and decision curve analysis. Internal validation was assessed using the bootstrapping validation. RESULTS: According to the interquartile range of PLOS in a total of 310 patients, the PLOS of 235 patients was ≤P(75) (7 days) (normal PLOS), and the PLOS of 75 patients was > P(75) (prolonged PLOS). The LASSO selected predictors that were used to build the prediction nomogram included BMI, diabetes, hypertension, duration of surgery, duration of anesthesia, anesthesia type, intraoperative blood loss, sufentanil for postoperative analgesia, and postoperative complication. The model displayed good discrimination with an AUC value of 0.807 (95% CI: 0.758–0.849, P < 0.001), a Kappa value of 0.5186 (cutoff value, 0.2445, P < 0.001), and good calibration. A high C-index value of 0.776 could still be reached in the interval validation. Decision curve analysis showed that the prolonged PLOS nomogram was clinically useful when intervention was decided at the prolonged PLOS possibility threshold of 3%. CONCLUSIONS: This study developed a novel nomogram with a relatively good accuracy to help clinicians access the risk of prolonged PLOS in lumbar fusion surgery patients. By an estimate of individual risk, surgeons and anesthesiologists may shorten PLOS and accelerate postoperative recovery of lumbar fusion surgery through more accurate individualized treatment. Frontiers Media S.A. 2022-08-16 /pmc/articles/PMC9426777/ /pubmed/36051703 http://dx.doi.org/10.3389/fsurg.2022.925354 Text en © 2022 Lu, Huang, Chen and Wu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Surgery Lu, Chen-Xin Huang, Zhi-Bin Chen, Xiao-Mei Wu, Xiao-Dan Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title | Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title_full | Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title_fullStr | Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title_full_unstemmed | Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title_short | Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram |
title_sort | predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: development and assessment of a novel predictive nomogram |
topic | Surgery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426777/ https://www.ncbi.nlm.nih.gov/pubmed/36051703 http://dx.doi.org/10.3389/fsurg.2022.925354 |
work_keys_str_mv | AT luchenxin predictingprolongedpostoperativelengthofstayriskinpatientsundergoinglumbarfusionsurgerydevelopmentandassessmentofanovelpredictivenomogram AT huangzhibin predictingprolongedpostoperativelengthofstayriskinpatientsundergoinglumbarfusionsurgerydevelopmentandassessmentofanovelpredictivenomogram AT chenxiaomei predictingprolongedpostoperativelengthofstayriskinpatientsundergoinglumbarfusionsurgerydevelopmentandassessmentofanovelpredictivenomogram AT wuxiaodan predictingprolongedpostoperativelengthofstayriskinpatientsundergoinglumbarfusionsurgerydevelopmentandassessmentofanovelpredictivenomogram |