Cargando…
WhichTF is functionally important in your open chromatin data?
We present WhichTF, a computational method to identify functionally important transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, WhichTF applies an ontology-guided functional approach to compute novel enrichment by integrating accessibility measurements, high-confide...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426921/ https://www.ncbi.nlm.nih.gov/pubmed/36040971 http://dx.doi.org/10.1371/journal.pcbi.1010378 |
_version_ | 1784778787108421632 |
---|---|
author | Tanigawa, Yosuke Dyer, Ethan S. Bejerano, Gill |
author_facet | Tanigawa, Yosuke Dyer, Ethan S. Bejerano, Gill |
author_sort | Tanigawa, Yosuke |
collection | PubMed |
description | We present WhichTF, a computational method to identify functionally important transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, WhichTF applies an ontology-guided functional approach to compute novel enrichment by integrating accessibility measurements, high-confidence pre-computed conservation-aware TF binding sites, and putative gene-regulatory models. Comparison with prior sheer abundance-based methods reveals the unique ability of WhichTF to identify context-specific TFs with functional relevance, including NF-κB family members in lymphocytes and GATA factors in cardiac cells. To distinguish the transcriptional regulatory landscape in closely related samples, we apply differential analysis and demonstrate its utility in lymphocyte, mesoderm developmental, and disease cells. We find suggestive, under-characterized TFs, such as RUNX3 in mesoderm development and GLI1 in systemic lupus erythematosus. We also find TFs known for stress response, suggesting routine experimental caveats that warrant careful consideration. WhichTF yields biological insight into known and novel molecular mechanisms of TF-mediated transcriptional regulation in diverse contexts, including human and mouse cell types, cell fate trajectories, and disease-associated cells. |
format | Online Article Text |
id | pubmed-9426921 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94269212022-08-31 WhichTF is functionally important in your open chromatin data? Tanigawa, Yosuke Dyer, Ethan S. Bejerano, Gill PLoS Comput Biol Research Article We present WhichTF, a computational method to identify functionally important transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, WhichTF applies an ontology-guided functional approach to compute novel enrichment by integrating accessibility measurements, high-confidence pre-computed conservation-aware TF binding sites, and putative gene-regulatory models. Comparison with prior sheer abundance-based methods reveals the unique ability of WhichTF to identify context-specific TFs with functional relevance, including NF-κB family members in lymphocytes and GATA factors in cardiac cells. To distinguish the transcriptional regulatory landscape in closely related samples, we apply differential analysis and demonstrate its utility in lymphocyte, mesoderm developmental, and disease cells. We find suggestive, under-characterized TFs, such as RUNX3 in mesoderm development and GLI1 in systemic lupus erythematosus. We also find TFs known for stress response, suggesting routine experimental caveats that warrant careful consideration. WhichTF yields biological insight into known and novel molecular mechanisms of TF-mediated transcriptional regulation in diverse contexts, including human and mouse cell types, cell fate trajectories, and disease-associated cells. Public Library of Science 2022-08-30 /pmc/articles/PMC9426921/ /pubmed/36040971 http://dx.doi.org/10.1371/journal.pcbi.1010378 Text en © 2022 Tanigawa et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tanigawa, Yosuke Dyer, Ethan S. Bejerano, Gill WhichTF is functionally important in your open chromatin data? |
title | WhichTF is functionally important in your open chromatin data? |
title_full | WhichTF is functionally important in your open chromatin data? |
title_fullStr | WhichTF is functionally important in your open chromatin data? |
title_full_unstemmed | WhichTF is functionally important in your open chromatin data? |
title_short | WhichTF is functionally important in your open chromatin data? |
title_sort | whichtf is functionally important in your open chromatin data? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426921/ https://www.ncbi.nlm.nih.gov/pubmed/36040971 http://dx.doi.org/10.1371/journal.pcbi.1010378 |
work_keys_str_mv | AT tanigawayosuke whichtfisfunctionallyimportantinyouropenchromatindata AT dyerethans whichtfisfunctionallyimportantinyouropenchromatindata AT bejeranogill whichtfisfunctionallyimportantinyouropenchromatindata |