Cargando…
An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology
BACKGROUND: Snakebite envenoming is a neglected tropical disease that kills an estimated 81,000 to 138,000 people and disables another 400,000 globally every year. The World Health Organization aims to halve this burden by 2030. To achieve this ambitious goal, we need to close the data gap in snake...
Autores principales: | Bolon, Isabelle, Picek, Lukáš, Durso, Andrew M., Alcoba, Gabriel, Chappuis, François, Ruiz de Castañeda, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426939/ https://www.ncbi.nlm.nih.gov/pubmed/35969634 http://dx.doi.org/10.1371/journal.pntd.0010647 |
Ejemplares similares
-
Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world
por: Bolon, Isabelle, et al.
Publicado: (2020) -
Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health
por: Durso, Andrew M., et al.
Publicado: (2021) -
Participatory approaches and open data on venomous snakes: A neglected opportunity in the global snakebite crisis?
por: Geneviève, Lester Darryl, et al.
Publicado: (2018) -
Herpetology /
Publicado: (2001) -
Medical Herpetology
por: Kwaku, Kevin F.
Publicado: (1994)