Cargando…

Text-Based Emotion Recognition Using Deep Learning Approach

Sentiment analysis is a method to identify people's attitudes, sentiments, and emotions towards a given goal, such as people, activities, organizations, services, subjects, and products. Emotion detection is a subset of sentiment analysis as it predicts the unique emotion rather than just stati...

Descripción completa

Detalles Bibliográficos
Autores principales: Bharti, Santosh Kumar, Varadhaganapathy, S, Gupta, Rajeev Kumar, Shukla, Prashant Kumar, Bouye, Mohamed, Hingaa, Simon Karanja, Mahmoud, Amena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427219/
https://www.ncbi.nlm.nih.gov/pubmed/36052029
http://dx.doi.org/10.1155/2022/2645381
Descripción
Sumario:Sentiment analysis is a method to identify people's attitudes, sentiments, and emotions towards a given goal, such as people, activities, organizations, services, subjects, and products. Emotion detection is a subset of sentiment analysis as it predicts the unique emotion rather than just stating positive, negative, or neutral. In recent times, many researchers have already worked on speech and facial expressions for emotion recognition. However, emotion detection in text is a tedious task as cues are missing, unlike in speech, such as tonal stress, facial expression, pitch, etc. To identify emotions from text, several methods have been proposed in the past using natural language processing (NLP) techniques: the keyword approach, the lexicon-based approach, and the machine learning approach. However, there were some limitations with keyword- and lexicon-based approaches as they focus on semantic relations. In this article, we have proposed a hybrid (machine learning + deep learning) model to identify emotions in text. Convolutional neural network (CNN) and Bi-GRU were exploited as deep learning techniques. Support vector machine is used as a machine learning approach. The performance of the proposed approach is evaluated using a combination of three different types of datasets, namely, sentences, tweets, and dialogs, and it attains an accuracy of 80.11%.