Cargando…
Few-Shot Learning for Image-Based Nonintrusive Appliance Signal Recognition
In this article, we present the recognition of nonintrusive disaggregated appliance signals through a reduced dataset computer vision deep learning approach. Deep learning data requirements are costly in terms of acquisition time, storage memory requirements, computation time, and dynamic memory usa...
Autores principales: | Matindife, L., Sun, Y., Wang, Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427221/ https://www.ncbi.nlm.nih.gov/pubmed/36052035 http://dx.doi.org/10.1155/2022/2142935 |
Ejemplares similares
-
Nonintrusive Appliance Load Monitoring: An Overview, Laboratory Test Results and Research Directions
por: Wójcik, Augustyn, et al.
Publicado: (2019) -
Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain
por: Lin, Hong, et al.
Publicado: (2022) -
Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning
por: Sun, Bingjian, et al.
Publicado: (2022) -
Semi-supervised few-shot learning approach for plant diseases recognition
por: Li, Yang, et al.
Publicado: (2021) -
Few-shot learning for joint model in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2023)