Cargando…
A Comparison on LSTM Deep Learning Method and Random Walk Model Used on Financial and Medical Applications: An Example in COVID-19 Development Prediction
This study aims to establish the model of the cryptocurrency price trend based on a financial theory using the Long Short-Term Memory (LSTM) networks model with multiple combinations between the window length and the predicting horizons. The Random Walk model is also applied with different parameter...
Autores principales: | Yao, Yifan, Li, Xinxin, Li, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427226/ https://www.ncbi.nlm.nih.gov/pubmed/36052038 http://dx.doi.org/10.1155/2022/4383245 |
Ejemplares similares
-
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition
por: Huang, Guohua, et al.
Publicado: (2022) -
Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN
por: Dong, Xishuang, et al.
Publicado: (2019) -
ResNet-BiLSTM: A Multiscale Deep Learning Model for Heartbeat Detection Using Ballistocardiogram Signals
por: Liu, Yijun, et al.
Publicado: (2022) -
Analysis of Application Examples of Differential Privacy in Deep Learning
por: Shen, Zhidong, et al.
Publicado: (2021)