Cargando…

An Improved YOLOX Algorithm for Forest Insect Pest Detection

A large number of insect pests in the forest will seriously affect the construction of forest resources and agriculture in China. In this regard, in order to deeply understand and analyze the existing forest pest detection technology, it is found that it cannot meet practical needs. In order to prev...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jiyu, Huang, Yong, Huang, Hongliang, Zhu, Weirong, Zhang, Jun, Zhou, Xiaolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427259/
https://www.ncbi.nlm.nih.gov/pubmed/36052042
http://dx.doi.org/10.1155/2022/5787554
Descripción
Sumario:A large number of insect pests in the forest will seriously affect the construction of forest resources and agriculture in China. In this regard, in order to deeply understand and analyze the existing forest pest detection technology, it is found that it cannot meet practical needs. In order to prevent the harm caused by forest pests, it is necessary to correctly identify the types of pests and take targeted control measures. Therefore, this paper proposes a forest pest detection algorithm based on improved YOLOX. Firstly, aiming at the problem that there are few image data of real deep forest pests in the wild, we use Mosaic, Mixup, and random erasure data enhancement to preprocess the images. Secondly, in order to extract fine-grained features, shallow information is introduced into the existing network architecture, and a two-way cross-scale feature fusion mechanism is adopted. Finally, the improved YOLOX algorithm proposed in this paper has achieved the best results on the public forest pest dataset IP102.