Cargando…
An Improved YOLOX Algorithm for Forest Insect Pest Detection
A large number of insect pests in the forest will seriously affect the construction of forest resources and agriculture in China. In this regard, in order to deeply understand and analyze the existing forest pest detection technology, it is found that it cannot meet practical needs. In order to prev...
Autores principales: | Huang, Jiyu, Huang, Yong, Huang, Hongliang, Zhu, Weirong, Zhang, Jun, Zhou, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427259/ https://www.ncbi.nlm.nih.gov/pubmed/36052042 http://dx.doi.org/10.1155/2022/5787554 |
Ejemplares similares
-
ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family
por: Xu, Lijia, et al.
Publicado: (2023) -
Improved Algorithm for Insulator and Its Defect Detection Based on YOLOX
por: Han, Gujing, et al.
Publicado: (2022) -
Real-Time Forest Fire Detection by Ensemble Lightweight YOLOX-L and Defogging Method
por: Huang, Jiarun, et al.
Publicado: (2023) -
Fisheye Image Detection of Trees Using Improved YOLOX for Tree Height Estimation
por: Song, Jiayin, et al.
Publicado: (2022) -
Yolo-Pest: An Insect Pest Object Detection Algorithm via CAC3 Module
por: Xiang, Qiuchi, et al.
Publicado: (2023)