Cargando…
Unsupervised layer-wise feature extraction algorithm for surface electromyography based on information theory
Feature extraction is a key task in the processing of surface electromyography (SEMG) signals. Currently, most of the approaches tend to extract features with deep learning methods, and show great performance. And with the development of deep learning, in which supervised learning is limited by the...
Autores principales: | Li, Mingqiang, Liu, Ziwen, Tang, Siqi, Ge, Jianjun, Zhang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427327/ https://www.ncbi.nlm.nih.gov/pubmed/36051640 http://dx.doi.org/10.3389/fnins.2022.975131 |
Ejemplares similares
-
Feature-Level Fusion of Surface Electromyography for Activity Monitoring
por: Xi, Xugang, et al.
Publicado: (2018) -
Feature Extraction of Surface Electromyography Using Wavelet Weighted Permutation Entropy for Hand Movement Recognition
por: Liu, Xiaoyun, et al.
Publicado: (2020) -
An Adaptive Homeostatic Algorithm for the Unsupervised Learning of Visual Features
por: Perrinet, Laurent U.
Publicado: (2019) -
Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography
por: Tenan, Matthew S., et al.
Publicado: (2017) -
MSClust: a tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data
por: Tikunov, Y. M., et al.
Publicado: (2011)