Cargando…
From data to interpretable models: machine learning for soil moisture forecasting
Soil moisture is critical to agricultural business, ecosystem health, and certain hydrologically driven natural disasters. Monitoring data, though, is prone to instrumental noise, wide ranging extrema, and nonstationary response to rainfall where ground conditions change. Furthermore, existing soil...
Autores principales: | Basak, Aniruddha, Schmidt, Kevin M., Mengshoel, Ole Jakob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427440/ https://www.ncbi.nlm.nih.gov/pubmed/36060709 http://dx.doi.org/10.1007/s41060-022-00347-8 |
Ejemplares similares
-
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA
por: Lucas, Benjamin, et al.
Publicado: (2022) -
Downscaling satellite soil moisture using geomorphometry and machine learning
por: Guevara, Mario, et al.
Publicado: (2019) -
Global soil moisture data derived through machine learning trained with in-situ measurements
por: O., Sungmin, et al.
Publicado: (2021) -
A Novel ABRM Model for Predicting Coal Moisture Content
por: Zhang, Fan, et al.
Publicado: (2022) -
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
por: Döpper, Veronika, et al.
Publicado: (2022)