Cargando…
Markov neighborhood regression for statistical inference of high‐dimensional generalized linear models
High‐dimensional inference is one of fundamental problems in modern biomedical studies. However, the existing methods do not perform satisfactorily. Based on the Markov property of graphical models and the likelihood ratio test, this article provides a simple justification for the Markov neighborhoo...
Autores principales: | Sun, Lizhe, Liang, Faming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427730/ https://www.ncbi.nlm.nih.gov/pubmed/35688606 http://dx.doi.org/10.1002/sim.9493 |
Ejemplares similares
-
Statistical inference for piecewise-deterministic Markov processes
por: Azais, Romain, et al.
Publicado: (2018) -
Regression: Linear Models in Statistics
por: Bingham, N H, et al.
Publicado: (2010) -
Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach
por: Fei, Zhe, et al.
Publicado: (2021) -
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
por: Titsias, Michalis K., et al.
Publicado: (2016) -
Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise Regression
por: Pijyan, Alex, et al.
Publicado: (2020)