Cargando…
Synthesizing theories of human language with Bayesian program induction
Automated, data-driven construction and evaluation of scientific models and theories is a long-standing challenge in artificial intelligence. We present a framework for algorithmically synthesizing models of a basic part of human language: morpho-phonology, the system that builds word forms from sou...
Autores principales: | Ellis, Kevin, Albright, Adam, Solar-Lezama, Armando, Tenenbaum, Joshua B., O’Donnell, Timothy J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427767/ https://www.ncbi.nlm.nih.gov/pubmed/36042196 http://dx.doi.org/10.1038/s41467-022-32012-w |
Ejemplares similares
-
Global Mental Health: sharing and synthesizing knowledge for sustainable development
por: O'Donnell, K., et al.
Publicado: (2016) -
Bayesian analysis of phase data in EEG and MEG
por: Dimmock, Sydney, et al.
Publicado: (2023) -
The Toxic Effect of Language on Medicine: College Day Lecture 1995
por: O'Donnell, Michael
Publicado: (1995) -
Computer-assisted query formulation
por: Cheung, Alvin, et al.
Publicado: (2016) -
Reply to Murphy and Leivada: Program induction can learn language
por: Piantadosi, Steven T., et al.
Publicado: (2022)