Cargando…
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
We evaluated a multiclass classification model to predict estimated glomerular filtration rate (eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based T1-weighted in-p...
Autores principales: | Hara, Yuki, Nagawa, Keita, Yamamoto, Yuya, Inoue, Kaiji, Funakoshi, Kazuto, Inoue, Tsutomu, Okada, Hirokazu, Ishikawa, Masahiro, Kobayashi, Naoki, Kozawa, Eito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427930/ https://www.ncbi.nlm.nih.gov/pubmed/36042326 http://dx.doi.org/10.1038/s41598-022-19009-7 |
Ejemplares similares
-
The utility of automatic segmentation of kidney MRI in chronic kidney disease using a 3D convolutional neural network
por: Inoue, Kaiji, et al.
Publicado: (2023) -
Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies
por: Nagawa, Keita, et al.
Publicado: (2021) -
Framework for estimating renal function using magnetic resonance imaging
por: Ishikawa, Masahiro, et al.
Publicado: (2022) -
Application of Magnetic Resonance Imaging in the Evaluation of Nutritional Status: A Literature Review with Focus on Dialysis Patients
por: Inoue, Tsutomu, et al.
Publicado: (2021) -
Diagnostic utility of a conventional MRI-based analysis and texture analysis for discriminating between ovarian thecoma-fibroma groups and ovarian granulosa cell tumors
por: Nagawa, Keita, et al.
Publicado: (2022)