Cargando…

MicroRNA profiling of subcutaneous adipose tissue in periparturient dairy cows at high or moderate body condition

A growing body of evidence shows that microRNA (miRNA), play important roles in regulating adipose tissue (AT) physiology and function. The objective was to characterize the AT miRNA profile in over-conditioned (HBCS, n = 19) versus moderate-conditioned (MBCS, n = 19) periparturient dairy cows. Tail...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadri, Hassan, Ghaffari, Morteza Hosseini, Trakooljul, Nares, Ceciliani, Fabrizio, Sauerwein, Helga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427980/
https://www.ncbi.nlm.nih.gov/pubmed/36042230
http://dx.doi.org/10.1038/s41598-022-18956-5
Descripción
Sumario:A growing body of evidence shows that microRNA (miRNA), play important roles in regulating adipose tissue (AT) physiology and function. The objective was to characterize the AT miRNA profile in over-conditioned (HBCS, n = 19) versus moderate-conditioned (MBCS, n = 19) periparturient dairy cows. Tail-head subcutaneous AT biopsied on d -49 and 21 relative to parturition were used for miRNA sequencing. The miR-486 was the most significant miRNA among the upregulated miRNA on d -49, which might be related to more pronounced changes in lipogenesis and altered insulin sensitivity in AT of HBCS cows at dry-off. Comparing HBCS to MBCS on d 21, 23 miRNA were downregulated and 20 were upregulated. The predicted targets of upregulated differentially expressed (DE)-miRNA on d 21 were enriched in different pathways, including pathways related to lysosomes and peroxisomes. The predicted targets of downregulated DE-miRNA on d 21 were enriched in various pathways, including epidermal growth factor receptor, insulin resistance, hypoxia-inducible factor 1 signaling pathway, and autophagy. The results showed that over-conditioning was associated with changes in SCAT miRNA profile mainly on d 21, of which most were downregulated. The enriched pathways may participate in over-conditioning-associated metabolic challenges during early lactation.