Cargando…

Comparison between bearing strengths of molded-in and machined holes of GFR/PP composites

This study is an investigation of weight fraction (wt%) and fiber feedstock length (FFSL) effects on the bearing strength (BS) of bolted joints in glass-fiber-reinforced (GFR) polypropylene (PP) composites manufactured by an injection molding technique. The investigation was made for holes produced...

Descripción completa

Detalles Bibliográficos
Autores principales: Osama, M. M., Selmy, A. I., Abdelhaleem, Ayman M. M., Megahed, A. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428170/
https://www.ncbi.nlm.nih.gov/pubmed/36042224
http://dx.doi.org/10.1038/s41598-022-18943-w
Descripción
Sumario:This study is an investigation of weight fraction (wt%) and fiber feedstock length (FFSL) effects on the bearing strength (BS) of bolted joints in glass-fiber-reinforced (GFR) polypropylene (PP) composites manufactured by an injection molding technique. The investigation was made for holes produced either by molding or machining. For machined holes, the effect of drilling parameters (feed and speed) on BS was discussed. It is observed that BS decreased as FFSL increased. BS of both molded-in and drilled specimens was enhanced by increasing wt% of glass fiber. While slightly better BS was observed for molded-in specimens than drilled ones for all specimens. The drilling conditions’ effect on BS was found to be insignificant for drilled holes in long fibers reinforced PP, where the most significant factor was wt%. However, for short fibers reinforced PP, the spindle speed was the most significant factor followed by feed, while wt% has the lowest effect. Failure morphology mode for specimens indicates that for molded-in specimens, neat PP specimens failed under pure bearing mode while GFR/PP specimens failed under the mixed-mode failure (bearing and net tension). For machined specimens, all specimens failed under mixed-mode failure except for the highest wt% specimens which failed under net tension.