Cargando…

Yeast osmoregulation – glycerol still in pole position

In response to osmotic dehydration cells sense, signal, alter gene expression, and metabolically counterbalance osmotic differences. The main compatible solute/osmolyte that accumulates in yeast cells is glycerol, which is produced from the glycolytic intermediate dihydroxyacetone phosphate. This re...

Descripción completa

Detalles Bibliográficos
Autor principal: Blomberg, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428294/
https://www.ncbi.nlm.nih.gov/pubmed/35927716
http://dx.doi.org/10.1093/femsyr/foac035
Descripción
Sumario:In response to osmotic dehydration cells sense, signal, alter gene expression, and metabolically counterbalance osmotic differences. The main compatible solute/osmolyte that accumulates in yeast cells is glycerol, which is produced from the glycolytic intermediate dihydroxyacetone phosphate. This review covers recent advancements in understanding mechanisms involved in sensing, signaling, cell-cycle delays, transcriptional responses as well as post-translational modifications on key proteins in osmoregulation. The protein kinase Hog1 is a key-player in many of these events, however, there is also a growing body of evidence for important Hog1-independent mechanisms playing vital roles. Several missing links in our understanding of osmoregulation will be discussed and future avenues for research proposed. The review highlights that this rather simple experimental system—salt/sorbitol and yeast—has developed into an enormously potent model system unravelling important fundamental aspects in biology.