Cargando…
Closed-loop motor imagery EEG simulation for brain-computer interfaces
In a brain-computer interface (BCI) system, the testing of decoding algorithms, tasks, and their parameters is critical for optimizing performance. However, conducting human experiments can be costly and time-consuming, especially when investigating broad sets of parameters. Attempts to utilize prev...
Autores principales: | Shin, Hyonyoung, Suma, Daniel, He, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428352/ https://www.ncbi.nlm.nih.gov/pubmed/36061506 http://dx.doi.org/10.3389/fnhum.2022.951591 |
Ejemplares similares
-
Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021) -
Corrigendum: Review of public motor imagery and execution datasets in brain-computer interfaces
por: Gwon, Daeun, et al.
Publicado: (2023) -
Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment
por: Škola, Filip, et al.
Publicado: (2019) -
Improved Brain–Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery
por: Wang, Fan, et al.
Publicado: (2022) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012)