Cargando…
Enabling Fairness in Healthcare Through Machine Learning
The use of machine learning systems for decision-support in healthcare may exacerbate health inequalities. However, recent work suggests that algorithms trained on sufficiently diverse datasets could in principle combat health inequalities. One concern about these algorithms is that their performanc...
Autores principales: | Grote, Thomas, Keeling, Geoff |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428374/ https://www.ncbi.nlm.nih.gov/pubmed/36060496 http://dx.doi.org/10.1007/s10676-022-09658-7 |
Ejemplares similares
-
Equity in essence: a call for operationalising fairness in machine learning for healthcare
por: Wawira Gichoya, Judy, et al.
Publicado: (2021) -
Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms
por: Giovanola, Benedetta, et al.
Publicado: (2022) -
Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression
por: Yuan, Chenxi, et al.
Publicado: (2023) -
SAF: Stakeholders’ Agreement on Fairness in the Practice of Machine Learning Development
por: Curto, Georgina, et al.
Publicado: (2023) -
Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study
por: Liang, Xueping, et al.
Publicado: (2023)