Cargando…
Training Spiking Neural Networks for Reinforcement Learning Tasks With Temporal Coding Method
Recent years witness an increasing demand for using spiking neural networks (SNNs) to implement artificial intelligent systems. There is a demand of combining SNNs with reinforcement learning architectures to find an effective training method. Recently, temporal coding method has been proposed to tr...
Autores principales: | Wu, Guanlin, Liang, Dongchen, Luan, Shaotong, Wang, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428400/ https://www.ncbi.nlm.nih.gov/pubmed/36061595 http://dx.doi.org/10.3389/fnins.2022.877701 |
Ejemplares similares
-
VTSNN: a virtual temporal spiking neural network
por: Qiu, Xue-Rui, et al.
Publicado: (2023) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
por: Liu, Siying, et al.
Publicado: (2023) -
Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations
por: Vincent-Lamarre, Philippe, et al.
Publicado: (2020)