Cargando…
Early prediction of clinical scores for left ventricular reverse remodeling using extreme gradient random forest, boosting, and logistic regression algorithm representations
OBJECTIVE: At present, there is no early prediction model of left ventricular reverse remodeling (LVRR) for people who are in cardiac arrest with an ejection fraction (EF) of ≤35% at first diagnosis; thus, the purpose of this article is to provide a supplement to existing research. MATERIALS AND MET...
Autores principales: | Liu, Lu, Qiao, Cen, Zha, Jun-Ren, Qin, Huan, Wang, Xiao-Rui, Zhang, Xin-Yu, Wang, Yi-Ou, Yang, Xiu-Mei, Zhang, Shu-Long, Qin, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428443/ https://www.ncbi.nlm.nih.gov/pubmed/36061535 http://dx.doi.org/10.3389/fcvm.2022.864312 |
Ejemplares similares
-
Early Prediction of Left Ventricular Reverse Remodeling in First-Diagnosed Idiopathic Dilated Cardiomyopathy: A Comparison of Linear Model, Random Forest, and Extreme Gradient Boosting
por: Xie, Xiangkun, et al.
Publicado: (2021) -
GTB-PPI: Predict Protein–protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting
por: Yu, Bin, et al.
Publicado: (2020) -
Gradient boosted trees with individual explanations: An alternative to logistic regression for viability prediction in the first trimester of pregnancy
por: Vaulet, Thibaut, et al.
Publicado: (2022) -
Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost and Logistic Regression
por: Xu, Yixian, et al.
Publicado: (2022) -
Logistic random forest boosting technique for Alzheimer’s diagnosis
por: Shastry, K. Aditya, et al.
Publicado: (2023)