Cargando…
Utilizing data sampling techniques on algorithmic fairness for customer churn prediction with data imbalance problems
Background: Customer churn prediction (CCP) refers to detecting which customers are likely to cancel the services provided by a service provider, for example, internet services. The class imbalance problem (CIP) in machine learning occurs when there is a huge difference in the samples of the positiv...
Autores principales: | Maw, Maw, Haw, Su-Cheng, Ho, Chin-Kuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428497/ https://www.ncbi.nlm.nih.gov/pubmed/36071889 http://dx.doi.org/10.12688/f1000research.72929.2 |
Ejemplares similares
-
Fighting Churn with Data
por: Gold, Carl
Publicado: (2020) -
Customer churn prediction using composite deep learning technique
por: Khattak, Asad, et al.
Publicado: (2023) -
Lifelog Data-Based Prediction Model of Digital Health Care App Customer Churn: Retrospective Observational Study
por: Kwon, Hongwook, et al.
Publicado: (2021) -
Negative Correlation Learning for Customer Churn Prediction: A Comparison Study
por: Rodan, Ali, et al.
Publicado: (2015) -
Customer churn prediction for telecommunication industry: A Malaysian Case Study
por: Mustafa, Nurulhuda, et al.
Publicado: (2021)