Cargando…

Detection of emerging neurodegeneration using Bayesian linear mixed-effect modeling

Early detection of neurodegeneration, and prediction of when neurodegenerative diseases will lead to symptoms, are critical for developing and initiating disease modifying treatments for these disorders. While each neurodegenerative disease has a typical pattern of early changes in the brain, these...

Descripción completa

Detalles Bibliográficos
Autores principales: Cobigo, Yann, Goh, Matthew S., Wolf, Amy, Staffaroni, Adam M., Kornak, John, Miller, Bruce L., Rabinovici, Gil D., Seeley, William W., Spina, Salvatore, Boxer, Adam L., Boeve, Bradley F., Wang, Lei, Allegri, Ricardo, Farlow, Marty, Mori, Hiroshi, Perrin, Richard J., Kramer, Joel, Rosen, Howard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428846/
https://www.ncbi.nlm.nih.gov/pubmed/36030718
http://dx.doi.org/10.1016/j.nicl.2022.103144
Descripción
Sumario:Early detection of neurodegeneration, and prediction of when neurodegenerative diseases will lead to symptoms, are critical for developing and initiating disease modifying treatments for these disorders. While each neurodegenerative disease has a typical pattern of early changes in the brain, these disorders are heterogeneous, and early manifestations can vary greatly across people. Methods for detecting emerging neurodegeneration in any part of the brain are therefore needed. Prior publications have described the use of Bayesian linear mixed-effects (BLME) modeling for characterizing the trajectory of change across the brain in healthy controls and patients with neurodegenerative disease. Here, we use an extension of such a model to detect emerging neurodegeneration in cognitively healthy individuals at risk for dementia. We use BLME to quantify individualized rates of volume loss across the cerebral cortex from the first two MRIs in each person and then extend the BLME model to predict future values for each voxel. We then compare observed values at subsequent time points with the values that were expected from the initial rates of change and identify voxels that are lower than the expected values, indicating accelerated volume loss and neurodegeneration. We apply the model to longitudinal imaging data from cognitively normal participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), some of whom subsequently developed dementia, and two cognitively normal cases who developed pathology-proven frontotemporal lobar degeneration (FTLD). These analyses identified regions of accelerated volume loss prior to or accompanying the earliest symptoms, and expanding across the brain over time, in all cases. The changes were detected in regions that are typical for the likely diseases affecting each patient, including medial temporal regions in patients at risk for Alzheimer’s disease, and insular, frontal, and/or anterior/inferior temporal regions in patients with likely or proven FTLD. In the cases where detailed histories were available, the first regions identified were consistent with early symptoms. Furthermore, survival analysis in the ADNI cases demonstrated that the rate of spread of accelerated volume loss across the brain was a statistically significant predictor of time to conversion to dementia. This method for detection of neurodegeneration is a potentially promising approach for identifying early changes due to a variety of diseases, without prior assumptions about what regions are most likely to be affected first in an individual.